Privacy and Statistical Risk: Formalisms and Minimax Bounds
نویسندگان
چکیده
We explore and compare a variety of definitions for privacy and disclosure limitation in statistical estimation and data analysis, including (approximate) differential privacy, testingbased definitions of privacy, and posterior guarantees on disclosure risk. We give equivalence results between the definitions, shedding light on the relationships between different formalisms for privacy. We also take an inferential perspective, where—building off of these definitions— we provide minimax risk bounds for several estimation problems, including mean estimation, estimation of the support of a distribution, and nonparametric density estimation. These bounds highlight the statistical consequences of different definitions of privacy and provide a second lens for evaluating the advantages and disadvantages of different techniques for disclosure limitation.
منابع مشابه
On the Contractivity of Privacy Mechanisms
We present a novel way to compare the statistical cost of privacy mechanisms using their Dobrushin coefficient. Specifically, we provide upper and lower bounds for the Dobrushin coefficient of a privacy mechanism in terms of its maximal leakage and local differential privacy guarantees. Given the geometric nature of the Dobrushin coefficient, this approach provides some insights into the genera...
متن کاملMinimax Optimal Procedures for Locally Private Estimation
Working under a model of privacy in which data remains private even from the statistician,we study the tradeoff between privacy guarantees and the risk of the resulting statistical estima-tors. We develop private versions of classical information-theoretic bounds, in particular thosedue to Le Cam, Fano, and Assouad. These inequalities allow for a precise characterization ofs...
متن کاملDiscussion on “Minimax Optimal Procedures for Locally Private Estimation”
We congratulate Professors Duchi, Jordan and Wainwright on their path-breaking work in statistical decision theory and privacy. Their extension of classical information-theoretic lower bounds of Le Cam, Fano, and Assouad to local differential privacy can potentially lead to a systematic study of various lower bounds under all kinds of privacy constraints. Their successful treatments of some int...
متن کاملLocal Privacy, Data Processing Inequalities, and Statistical Minimax Rates
Working under a model of privacy in which data remains private even from the statistician, we study the tradeoff between privacy guarantees and the utility of the resulting statistical estimators. We prove bounds on information-theoretic quantities, including mutual information and Kullback-Leibler divergence, that depend on the privacy guarantees. When combined with standard minimax techniques...
متن کاملLocal Privacy and Minimax Bounds: Sharp Rates for Probability Estimation
We provide a detailed study of the estimation of probability distributions— discrete and continuous—in a stringent setting in which data is kept private even from the statistician. We give sharp minimax rates of convergence for estimation in these locally private settings, exhibiting fundamental trade-offs between privacy and convergence rate, as well as providing tools to allow movement along ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.4451 شماره
صفحات -
تاریخ انتشار 2014